skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Atekwana, Estella"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lithospheric weakening mechanisms in non-volcanic segments of active continental rifts remain poorly understood, raising important questions about the geodynamic processes that drive magma-poor rifting. Here, we investigate the crustal and uppermost mantle structure beneath the non-volcanic Albertine-Rhino Graben (ARG) and the adjoining volcanic Edward-George Rift (EGR), East Africa. The ARG exhibits anomalous focusing of intra-rift faulting typically associated with magma-rich, early-stage rifts. Through field observations of rift structures, combined with 3D inversions and 2D forward modeling of gravity data, we investigate the potential controls on intra-rift tectonic strain in a setting with little to no magmatism. Field ground-truthing in the southern ARG reveals prominent rift-axial basement-rooted faulting that post-dates the establishment of border faults. Gravity inversion results show low-density anomalies extending from the surface to about 50 km depth beneath both the EGR and southern ARG, with the strongest anomalies under the ARG at around 15 km. 2D gravity modeling suggests that the lower crust and uppermost mantle are both thinned and less dense beneath these rift segments. In the EGR, crustal thinning and low-density anomalies align with low P-wave velocity zones, suggesting the presence of melt. Given the similar degree of crustal thinning and de-densification in the southern ARG, we infer that trapped lower-crustal melts may also exist beneath the rift, potentially contributing to the early focusing of intra-rift strain. We propose that in non-volcanic rifts, deep, unexposed (‘blind’) melts may play a key role in mechanical weakening of the lithosphere, enabling continued tectonic extension even in the absence of significant surface volcanism. 
    more » « less
    Free, publicly-accessible full text available October 27, 2026
  2. Geomagnetic methods allow us to explore the behavior of Earth's geodynamo, constrain Earth's composition and structure, and locate critical minerals and other resources essential for modern technologies and the energy transition. The magnetic properties of rocks and sediments are assumed to be stable and largely attributable to inorganic processes. This conventional view overlooks mounting evidence of microorganisms as key players in rock transformations and geological processes. Iron-bearing minerals are ubiquitous in most environments and are commonly used by microorganisms as electron donors and acceptors. Microorganisms modulate rock magnetic properties by creating, altering, and dissolving Fe-bearing minerals, potentially modifying the original magnetization, complicating interpretations of the magnetic record. This review provides an overview of biogenic pathways that modulate magnetic minerals and discusses common, yet underutilized, magnetic methods for capturing such behavior. Appreciating the influence of microbial activities on magnetic properties will improve our interpretations of Earth's geologic past and its elemental cycling.▪Microorganisms modulate rock magnetic properties, challenging traditional views of a geologically stable magnetic record formed solely by inorganic processes.▪Microbial iron cycling modulates magnetic properties modifying magnetic information recorded in rocks.▪Microbial processes may have impacted Earth's magnetic history more deeply than previously understood.▪Recognizing microbial contributions is critical for accurate interpretation of paleomagnetic and environmental magnetic records and could aid in the search for life on other planetary bodies. 
    more » « less
    Free, publicly-accessible full text available May 30, 2026
  3. This is the TDEFNODE block inversion software used in the study "Constraining the Kinematics of the Victoria Microplate and the Northern Western Branch of the East African Rift System; The software is installed and run on a Linux terminal. All the files needed to run TDEFNODE for this study, along with their outputs, are included in TDEFNODE_block_inversion_modeling_NWB_Kwagalakwe_2025_v2.tar.gz, which is a revised version of TDEFNODE_block_inversion_modeling_NWB_Kwagalakwe_2025.tar.gz (Version v1). 
    more » « less
  4. Geophysical investigations documenting enhanced magnetic susceptibility (MS) within the water table fluctuation zone at hydrocarbon contaminated sites suggest that MS can be used as a proxy for investigating microbial mediated iron reduction during intrinsic bioremediation. Here, we investigated the microbial community composition over a 5-year period at a hydrocarbon-contaminated site that exhibited transient elevated MS responses. Our objective was to determine the key microbial populations in zones of elevated MS. We retrieved sediment cores from the petroleum-contaminated site near Bemidji, MN, United States, and performed MS measurements on these cores. We also characterized the microbial community composition by high-throughput 16S rRNA gene amplicon sequencing from samples collected along the complete core length. Our spatial and temporal analysis revealed that the microbial community composition was generally stable throughout the period of investigation. In addition, we observed distinct vertical redox zonations extending from the upper vadose zone into the saturated zone. These distinct redox zonations were concomitant with the dominant microbial metabolic processes as follows: (1) the upper vadose zone was dominated by aerobic microbial populations; (2) the lower vadose zone was dominated by methanotrophic populations, iron reducers and iron oxidizers; (3) the smear zone was dominated by iron reducers; and (4) the free product zone was dominated by syntrophic and methanogenic populations. Although the common notion is that high MS values are caused by high magnetite concentrations that can be biotically formed through the activities of iron-reducing bacteria, here we show that the highest magnetic susceptibilities were measured in the free-phase petroleum zone, where a methanogenic community was predominant. This field study may contribute to the emerging knowledge that methanogens can switch their metabolism from methanogenesis to iron reduction with associated magnetite precipitation in hydrocarbon contaminated sediments. Thus, geophysical methods such as MS may help to identify zones where iron cycling/reduction by methanogens is occurring. 
    more » « less
  5. Abstract Iron mineral transformations occurring in hydrocarbon‐contaminated sites are linked to the biodegradation of the hydrocarbons. At a hydrocarbon‐contaminated site near Bemidji, Minnesota, USA, measurements of magnetic susceptibility (MS) are useful for monitoring the natural attenuation of hydrocarbons related to iron cycling. However, a transient MS, previously observed at the site, remains poorly understood and the iron mineral phases acting as reactants and products associated with this MS perturbation remain largely unknown. To address these unknowns, we acquired mineral magnetism measurements, including hysteresis loops, backfield curves, and isothermal remanent magnetizations on sediment core samples retrieved from the site and magnetite‐filled mineral packets installed within the aquifer. Our data show that the core samples and magnetite packs display decreasing magnetization with time and that this loss in magnetization is accompanied by increasing bulk coercivity consistent with decreased average grain size and/or partial oxidation. Low‐temperature magnetometry on all samples displayed behavior consistent with magnetite, but samples within the plume also show evidence of maghemitization. This interpretation is supported by the occurrence of shrinkage cracks on the surface of the grains imaged via scanning electron microscopy. Magnetite transformation to maghemite typically occurs under oxic conditions, here, we propose that maghemitization occurs within the anoxic portions of the plume via microbially mediated anaerobic oxidation. Mineral dissolution also occurs within the plume. Microorganisms capable of such anaerobic oxidation have been identified within other areas at the Bemidji site, but additional microbiological studies are needed to link specific anaerobic iron oxidizers with this loss of magnetization. 
    more » « less